
Deep Learning Recommendation in Alibaba

PAI Team, Computing Platform, Alibaba Group

Wencong Xiao, Shiru Ren, Tongxuan Liu, Yong Li

PRmalloc: Leveraging Predictability for Deep Learning Memory Allocation

Industrial-scale recommendation

PRmalloc: Predictable Reusable memory allocator 

We introduce PRmalloc, a brand new predictable reusable memory

allocator taking advantage of such remarkable predictability. As indicated

in the figure, in contrast to conventional memory allocators, PRmalloc

adapts to the memory usage characteristics of different deep learning

training applications, by learning from the memory block life-cycle at the

early stages through MemoryPlanner module. The collected domain

knowledge helps to generate heuristic policy into TensorPoolAllocator to

better schedule the memory recycle.

Existing memory allocators: A poor fit to deep learning 

• Those memory libraries prominently improve the performance for web 

server, benefiting from a per-thread memory pool design for small 

memory blocks (e.g., < 32KB). 

• The tensors used in training usually require large memory blocks 

(~MB), and the summary of total required memory can be tens of GB. 

The predictability of deep learning training 

• Includes millions of mini-batches, each mini-batch is a traversal on a 

deterministic data flow graph for computation.

• Most of the allocate/deallocate requests are consistent among mini-

batches. 

• The dependency relationship of computation can also be utilized to 

schedule memory block recycle.

System architecture and workflow 

MemoryPlanner first collects the tensor allocation information during

execution. Based on this information, MemoryPlanner can heuristically search

for the optimal memory allocation scheme for the running deep learning

application. By leveraging the malloc library, TensorPoolAllocator uses a lock-

free queue to manage the memory blocks' allocation and deallocation

according to the optimal memory allocation scheme.

Thanks to the predictability, we observe that the read/write sequences of the

tensors remain quite stable between successive mini-batches. To find the

optimal memory allocation scheme, the MemoryPlanner first leverages the

allocation statistic to record all tensors‘ allocate and deallocate operations in

the first K mini-batches. Based on the estimations, it heuristically searches for

the optimal bin policy to minimize the memory usage and minor page fault.

TensorPoolAllocator considers the identified heuristic policy to manage a

memory pool for the rest of mini-batches.

Design overview

Two vital benefits

• Memory allocator can cache the large memory block, saving the minor 

page fault introduced by memory allocation system call. 

• A better memory reuse plan can be learned to reduce the memory 

footprint, minimizing the overall resource usage.

Heuristic memory reuse within mini-batches

To further cut down the memory footprint, PRmalloc also reuses memory

blocks by utilizing the memory dependency information within a mini-batch.

During allocation statistics recording, PRmalloc first sorts all memory

allocation requests within a mini-batch from largest to smallest according to

the size of the request. Then, PRmalloc tries to match each request with the

appropriate-sized block (which is available for the requested time period) by

ascending order of the bin size.

Evaluation

 0

 1

 2

MinorPageFault MemoryUsage TrainingSpeed

N
o
rm

a
li
ze

d
 p

e
rf

o
rm

a
n
ce

Original TF
TF with PRmalloc

Deep-CTR Performance

We use a real production workload from Taobao Search of 210 Alibaba to

evaluate PRmalloc. Experiment result shows that PRmalloc boosts the training

speed of state-of-art recommendation models by 1.8×, benefiting from lower

memory footprint and fewer page fault.

• Train models with massive sparse user 

behavior data on CPU

• Consume a large amount of host memory

• Scale to thousands of servers on TensorFlow

• Occupy more than 50% memory compared 

with the real requirement 

• Up to 900K/s minor page fault during job 

execution 

Recommendation as 

the first-class entry


