
All You Need to Know about Scheduling Deep Learning Jobs

Wencong Xiao
Beihang University and Microsoft Research

Advisors: Fan Yang, Lidong Zhou
Microsoft Research

1. Introduction
With the recent breakthrough in deep neural network, there
is an emerging class of data center with accelerated hardware
to support efficient training on neural network model [1,
2]. The accelerated hardware (e.g. GPU, FPGA, TPU [9],
Cambricon [11]), interconnected with high speed network
(e.g. infiniband) and coupled with large training data [7],
provides orders of magnitude training speedup.

In this paper, we study the new challenge of resource
management derived from the characteristic of deep learning
workload in a cluster with accelerated hardware.

The first challenge is to find an extensible resource ab-
straction to represent the diversified and fast evolving accel-
erated devices. Deep learning job should be able to learn the
resource type and its usage, and be able to request for a cer-
tain type of devices with specific topology requirement. In
Section 2, we introduce detailed hardware configuration in a
typical data center for deep learning and propose a resource
abstraction to address this challenge.

The second challenge results from a tension in deep learn-
ing job scheduling. For multiple deep learning jobs, we find
the system should “spread” them away to avoid mutual in-
terference. While for a large deep learning job that requires
multiple accelerated devices, the system should “pack” it to
the devices that are close to each other to avoid significant
loss of training speed. The spreading will lead to the frag-
mented usage of the accelerated devices, while the packing
would require the consecutive slots in the devices. In Sec-
tion 3, we quantify the effects of job interference and demon-
strate the significant performance difference for a large job
with different locality setting. We then discuss some possi-
ble way to resolve the tension introduced by job spreading
and packing.

2. Heterogeneity in a deep learning cluster
Typically, a deep learning cluster contains multiple infini-
band domains, each consists of multiple racks. Different rack
could install with different accelerated devices, such as dif-
ferent generation of GPU, FPGA, TPU and ASIC [9, 11].
The accelerated devices may have a PCIe interface, they
may further interconnect to each other with vendor spe-
cific link technique, such as NVLINK [5]. The device con-

nects to the CPU directly or through PCIe switch. Figure 2a
shows a hardware configuration of a server in a GPU cluster.
The server contains two CPUs, each connects to two PCIe
switches hosting two GPUs.

The resource management system should capture the re-
source usage of diversified hardware and allow deep learn-
ing jobs to request for a certain type of hardware with a cer-
tain topology requirement. To this end, we design a com-
pact resource abstraction. A bitmap is introduced to repre-
sent the availability of accelerated devices on each server. A
scheduler can use the bitmap to learn the runtime resource
usage and express resource request. We further use a con-
figuration set to denote a set of homogeneous servers (e.g.,
servers within a rack). Each configuration set includes de-
tailed meta information to describe the device type (e.g.,
GPU), device topology within a server (e.g., a 8-bit bitmap
denotes two CPUs, each with 2 PCI-e switches hosting 2
GPUs where they interconnect with NVLINK), and network
topology (within an IB domain). The meta data for a con-
figuration set is highly extensible and seldom changes. And
there are not many different configuration sets in a cluster.
The size of total meta data is not large and can be kept in
a read-only memory block when making scheduling deci-
sions.

3. The characteristics of deep learning job
A deep learning job often lasts for hours and some even lasts
for weeks. The performance is sensitive to locality: a small
percentage of performance changes could result in hours of
training time variance. Moreover, deep learning workload
usually requires gang-scheduling, the training process can-
not start until all required accelerated devices are granted.
In this section, we use GPU as an example of accelerated
device to show the characteristics of deep learning job.

3.1 Inner job performance
We have found that for a job runs on multiple GPUs, packing
GPUs as close as possible could achieve significantly better
performance.

Figure 1a quantifies the performance on different topol-
ogy, using three CNN models [8, 12, 13] in the Tensor-
flow [6] benchmark on NVIDIA P100 GPU machines. “Lo-



 0
 100
 200
 300
 400
 500
 600
 700
 800

Resnet50

InceptionV3

VGG16

Im
ag

es
/s

ec
on

d

Model

local 4-GPU
Local p-w 4-GPU
2 * 2-GPU
4 * 1-GPU

(a) Inter-server locality.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

SamePCIeSw

SameCPU

DiffC
PU

N
or

m
al

iz
ed

 s
pe

ed

GPU co-location

Alexnet
Resnet152

(b) Intra-server locality.

Figure 1: Mutli-GPU performance with locality setting.

cal 4-GPU” is the result when Tensorflow runs on a single
server using 4 GPUs. “Local p-w 4-GPU” shows the result
in the hardware setting while Tensorflow is configured to run
distributedly in parameter server mode [10], with one server
and one worker on the same server. “2x2-GPU” denotes the
result on 2 servers each using 2 GPUs. And “4x1-GPU”
shows the result on 4 1-GPU servers. As shown in the fig-
ure, spreading resources among different servers slows down
the job. For the 4-GPU ResNet50 case, the performance re-
duces by 28% when breaking into 2 servers, and significantly
drops by 59% when spreading to 4 servers. For VGG16,
even configuring Tensorflow in local parameter-server mode
would lead to 90% slowdown. Moreover, the GPU locality
within the same server also affects the performance. For ex-
ample, CNTK [3] benefits from GPU interconnecting tech-
nique like NCCL [4], which leverages GPUDirect to directly
access other GPU memory, avoiding extra data copy and
hence accelerating model training. Figure 1b shows the 2-
GPU CNTK job performance on different GPU locality level
for Alexnet and ResNet152. GPUs located under different
CPUs will lead to 27% slowdown for Alexnet and 11% for
ResNet152, comparing to the GPUs under the same PCIe
switch. On the other hand, some models like InceptionV3
can tolerate a certain degree of resource spreading: the “2x2-
GPU” case barely has any performance loss.

From Figure 1a and 1b we learn that, spreading resouce
generally has negative impact to deep learning jobs. But even
for deep learning jobs with the same hardware requirement
(2 or 4 GPUs), different type of deep learning workload
can tolerate different level of resource spreading. A schedul-
ing framework should have a flexible contract with the deep
learning workload. It not only should support scheduling re-
quest for a specific hardware and locality configuration, but
also should allow the job to express the degree of tolerance
in resource spreading.

3.2 Inter job interference
A deep learning job relies on GPU to accelerate computa-
tion, but it still requires frequent communication with CPU
through the shared PCIe bus. Thus jobs run in the same
server may interfere with each other. We observe noticeable
job inference in the RNN benchmark on both Tensorflow and
CNTK. In Figure 2b, we use 1-GPU job running solely in the
server as the baseline and compare two 1-GPU jobs running

CPU CPU

(a) Server architecture.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1-GPU
DiffC

PU

SameCPU

SamePCIeSw

N
or

m
al

iz
ed

 s
pe

ed

GPU co-location of different jobs

Tensorflow
CNTK

(b) Effect of job interference.

Figure 2: Server architecture and job interference.

on the same server with different GPU locality settings (on
different CPUs, on the same CPU, and under the same PCI-
e switch). The performance drops as the GPUs of the two
jobs are placed closer. It shows up to 12% slowdown in Ten-
sorflow and up to 40% slowdown in CNTK when under the
same PCI-e switch.

From the experiments we can see the requirements for
inter-job and intra-job scheduling inherently conflict with
opposite preference. Inter-job scheduling tends to spread
among different machines to avoid interference, therefore
result in resource fragmentation. Contrarily, large jobs prefer
devices to co-locate closely with stringent topology-aware
locality constraint for better performance. Large jobs suffer
more from the fragmentation. Based on our observation in a
real deep learning cluster, such large jobs suffer more from
such unfairness as about 80% jobs are 1-GPU jobs. However,
large jobs are often more important, handling larger dataset
and with larger model to achieve better accuracy.

4. Conclusion and future work
We design a new scheduling system for heterogeneous data
center with accelerated hardware to speedup deep learning
workloads. It adopts a flexible and compact resource abstrac-
tion to represent the evolving heterogeneous hardware with
locality and topology awareness.

The scheduling system embraces a decentralized design
to decouple cluster-wide policy from individual job schedul-
ing. Each job scheduler leverages the resource abstraction
view to learn cluster-wide resource usage and make schedul-
ing decision with locality and topology preference based on
its own hardware requirement and the specific characteristic
of deep learn model. A centralized scheduling component
maintains the lightweight cluster view, and quickly approves
or rejects the gang-scheduling request from individual job
scheduler based on resource status.

The scheduling system further adopts an adaptive mecha-
nism. When the cluster is under light load, it tends to spread
out jobs to avoid interference. While when the cluster is un-
der heavy load, it will pack the jobs together to make place
for multi-GPU jobs. A migration decision module will pack
small jobs closer during runtime to make place for large jobs
with strong locality constraint.



References
[1] AWS GPU. https://aws.amazon.com/ec2/

instance-types/p2/.

[2] Azure GPU. http://gpu.azure.com/.

[3] CNTK. http://www.cntk.ai/.

[4] NCCL. https://developer.nvidia.com/nccl/.

[5] NVIDIA NVLINK. http://www.nvidia.com/
object/nvlink.html/.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16).

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016.

[9] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,
R. Boyle, P. luc Cantin, C. Chao, C. Clark, J. Coriell, M. Da-
ley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Got-

tipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu,
R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacK-
ean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, and J. Ross. In-datacenter per-
formance analysis of a tensor processing unit. 2017. URL
https://arxiv.org/pdf/1704.04760.pdf.

[10] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the Parameter Server. In
11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). USENIX Association.

[11] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen,
and T. Chen. Cambricon: An instruction set architecture for
neural networks. In Proceedings of the 43rd International
Symposium on Computer Architecture, pages 393–405. IEEE
Press, 2016.

[12] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[13] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/p2/
http://gpu.azure.com/
http://www.cntk.ai/
https://developer.nvidia.com/nccl/
http://www.nvidia.com/object/nvlink.html/
http://www.nvidia.com/object/nvlink.html/
https://arxiv.org/pdf/1704.04760.pdf

	Introduction
	Heterogeneity in a deep learning cluster
	The characteristics of deep learning job 
	Inner job performance
	Inter job interference

	Conclusion and future work

