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Abstract
The growing importance of deep learning has driven its de-
ployments in extensive application scenarios and environ-
ments, and hence led to diversified optimizations through
both customized hardware and novel model algorithms.
However, this introduces burden for developers to incor-
porate these specific optimizations into existing models. We
propose an optimization mapping framework that isolates
the algorithm expressions from customized optimizations
through providing a data flow graph based pattern represen-
tation and automatic pattern matching to map sub-graphs of
deep learning computation to optimized implementations.
The preliminary results on TensorFlow [6] show that opti-
mization mapping can automatically identify a multi-layer
Long Short Term Memory (LSTM) model from the data
flow graph of applications and replace it with a cuDNN [9]
based LSTM operator, resulting in 4.12x performance im-
provement.

1. Introduction
Deep learning frameworks [1, 3, 6, 7], which transform user
script into data flow graph consisting of primitive operators
and tensors, witness the proliferation of various models and
applications in achieving great success for more and more
scenarios, leading to the burst of deep learning specific opti-
mizations.

We observe that the actual adoption of an optimization
normally goes through a common process. Usually, novel
deep learning models are invented and developed using ex-
isting primitive operators in a deep learning framework at
the beginning. Once proved practical in the real industry
scenario, their bottlenecks, often identified as sub-graphs,
are investigated and the corresponding optimizations are ap-
plied.

These optimizations often have the feature of customiza-
tion due to the following two factors. First, as the slow-
down of CPU scaling [12, 16], recent trend advocates GPU,
FPGA, and even ASIC-based hardware [8, 9, 11, 14, 15] to
act as the accelerators for deep learning, achieving often or-
ders of magnitude improvement on performance and power
efficiency. Since customized hardware usually have their
own design goals and limitations, they are often used to de-
sign customized operators for variant sub-graphs in different

new_c = c * sigmoid(f + 1.0) + 
sigmoid(i) + tanh(j)

new_h = tanh(new_c) * sigmoid(o)
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Figure 1: System overview of optimization mapping.

models. For example, ShiDianNao [11] focuses on acceler-
ating Convolutional Neural Network (CNN) and cuDNN [9]
has optimized Recurrent Neural Network (RNN) implemen-
tation. We envision more variant optimized components in
deep learning computation to appear in near future.

Secondly, optimizations may target for different appli-
cation scenarios and environments, e.g., in cloud or mo-
bile, which diversifies the optimization objectives consider-
ing different resource constraints and performance metrics.
For instance, MobileNets [13] and ShuffleNet [18] adopt
novel efficient structures for convolution network, keeping
roughly the same accuracy while significantly reducing the
model parameters for mobile devices.

Therefore, applying those new customized optimizations
into legacy deep learning model code is not effort-free, but
may require non-trivial code refactoring which significantly
increases the maintenance overhead.

In this paper, as indicated in Figure 1, we propose an op-
timization mapping scheme to isolate the general deep learn-
ing algorithm expression from the customized optimizations
specific to ad-hoc hardware or scenarios, through automati-
cally applying optimized implementation over the data flow
graph intermediate representation in a deep learning frame-
work.

2. Optimization mapping
Suppose we already have an optimized operator along with
its operation pattern in a unified representation. For an ap-
plication data flow graph that is also in the unified interme-
diate representation, our optimization mapping framework
can perform patten matching to identify matched sub-graphs
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Figure 2: Equal expression in LSTM.

and replace with the optimized operator, so as to apply such
optimization.

For pattern matching, both the data flow graph and the
pattern graph should be expanded into canonical form [2]
to avoid the mismatch of equivalent linear algebraic ex-
pressions due to non-isomorphism graph structure (e.g.
(AB)T = BTAT ). As for linear algebraic expression, poly-
nomial expansion [4] can help to generate canonical form
graph. However, some non-mathematic operators in deep
learning data flow graph would also introduce isomerism.
Figure 2a shows part of graph for the native LSTM. It con-
tains four Matmul–BiasAdd pairs for the gate calculation in
LSTM. Another equivalent expression is to use a Concat and
a Split to merge these four Matmul–BiasAdd pairs together
and get larger but less matrix operations, as shown in Fig-
ure 2b, which is more likely to outperform the previous one
in performance for higher parallelism. Through the tensor
dimension shape parameters in Concat and Split operators,
we can expand it to the native version. We choose the native
version as “canonical form” here.

In addition, we provide a powerful and flexible inter-
face for users to define matching pattern, as illustrated in
Figure 3b. It contains three fields. Field cell describes the
operator attributes and topology information as a graph for
pattern matching. Field op type describes the optimized op-
erator, including its type and parameters. The cell input field
describes the input of one cell to indicate their dependen-
cies in this pattern. Optimization mapping not only sup-
ports fixed algorithm operator set as the pattern, but also
dynamic recurrent operator set. The existence of cell input
field can indicate recurrent pattern. A concreted example
is multi-layer LSTM, which contains multiple identical
LSTM cells, as indicated in Figure 3a. A LSTM cell typ-
ically takes two inputs: one from the other cell, the other
from the input or upper layer cell. Currently we assume
the matching cells are organized in such 2D grids. There-
fore, after finding out all matched sub-graphs, optimization
mapping is able to figure out the steps per layer by count-
ing the cells with external input. As indicated in cell input
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(a) Multi-layer LSTM structure.

cuDNN_LSTM_pattern{
“cell”: { … },
“op_type”: { … },
“cell_input”: [ 

{external_input | other_cell}, 
{other_cell} 

] 
}

(b) Sample of pattern for Figure 3a.

Figure 3: Optimization mapping pattern definition example.
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Figure 4: Optimization mapping for cuDNN LSTM.

for two dimensions, the layer parameter can be calculated
by: #matched cell / #per layer step. Then optimization
mapping is able to feed these input parameters during opti-
mized operator replacement.

In optimization mapping, data-flow graph pattern match-
ing, also known as NP-complete sub-graph isomorphism
problem [10], is the most time consuming step. Fortunately,
we can leverage some characteristics of deep learning al-
gorithms to reduce the computation significantly. First, the
data flow graph is heterogeneous, often consists of tens or
hundreds of different operators types that reduce the search
space. Second, the output of the operator may be used by
many other operators, while the inputs of operator are much
less. Such as matrix multiply and sigmoid, these mathe-
matic operators or activation functions are either binary ex-
pression or unary expression. Searching multiple low de-
gree nodes for matching is cheaper than searching less high-
degree nodes. Especially the heterogeneous information can
help to filter out a lot of nodes. Thus, matching from the
output side back to input side in data flow graph can further
reduce the search space.

3. Preliminary result
We have implemented the optimization mapping as an op-
timizer in the open-source version Tensorflow(r1.3). With
such an implementation module, we define a pattern map-
ping from basic LSTM [17] to cuDNN LSTM and con-
duct an experiment on PTB dataset [5], using a GPU server
equipped with dual 2.6GHz Intel Xeon E5-2650 processors,
128GB of memory, a NVIDIA GTX1080 GPU, to demon-
strate the benefit.

Figure 4a and Figure 4b show the convergence curve
and the runtime of native LSTM and the replaced cuDNN
LSTM, with 2 layers and 20 steps for 20 epoches. The
replaced cuDNN LSTM version comes up with roughly the



same convergence curve while achieves 4.12x performance
speedup, without application level code modification.
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