Scheduling CPU for GPU-based Deep Learning jobs

Wencong Xiao^{+**}, Zhenhua Han, Hanyu Zhao⁺⁺, Xuan Peng⁺⁺, Quanlu Zhang⁺, Fan Yang⁺, Lidong Zhou⁺

- Beihang University, † Microsoft Research,
 The University of Hong Kong,
 - Huazhong University of Science and Technology, Peking University

Existing Approaches of Scheduling CPU

Isolated GPU, shared CPU

- Allocate deep learning jobs only considering GPU
- No CPU isolation, potential interference
- Hard to diagnose job performance

Based on task role

- Heuristic number of CPUs to each role of tasks -
- E.g.: 3-core for parameter-server, 4-core and 1-GPU for worker

Job0-PS

Bind CPU and GPU

- Fairly divide CPUs to the GPUs
- Each GPU will get a certain number of CPU regardless of job type

CPU is Undervalued

(1) CPU number affects performance

- Incorrect CPU allocation affects GPU-based deep learning jobs up to 15x
- Given insufficient CPU number, different jobs show different slowdown

(2) Heterogeneous CPU demand across jobs

- Some applications (e.g., Overfeat) require almost all the CPUs to extract 1-GPU's maximal performance
- RNN language model needs only 1-CPU to fully extract 1-GPU's performance

DL application	Category	#cores
Lenet	CV	20
Alexnet	CV	19
Overfeat	CV	22
Googlenet	CV	11
LanguageModel	NLP	1

* For plotting, the number of FlowNet2 and ResNet-50 increase by 1,000x and 100x respectively

(3) Better GPU, more CPU

- DL jobs are mixed with Ops in GPU (e.g., Convolution, Matrix -Multiplication) and Ops in CPU (e.g., data augmentation)
- With better GPU, Ops in GPU is faster, making the Ops in CPU become bottleneck 40
- Different jobs shows different sensitivity moving around different types of GPU

Bi-Att-Flow	NLP	8
DeepSpeech	Speech	3
Wavenet	Speech	3

CPU number required for best 1-GPU performance on P100 Azure VM (24 cores in total)

(4) Waving CPU demand over time

- In training, GPU is highly utilized; in validation, CPU is dominating
- With more CPU allocated for validation, the validation time reduces a lot

CPU number to achieve maximal perf.

NMT task profiling (1 P100 GPU + 4 cores)

Time with # of cores

Design and Preliminary Result

How to *automatically* decide *appropriate* CPU cores in *characteristic-aware* manner for effective GPU performance

- in a *heterogeneous* cluster?
- Light-weighted profiling for optimal experiment design based performance predictor
- Coarse-grained rescheduling
- Continual monitoring architecture

Performance predictor:

$$S = \begin{cases} P_0 * \log C + P_1 * C & C < \theta \\ P_2 & C >= \theta \end{cases}$$

C donates # of CPU cores. θ is the sweet point. P_i is parameters -

Preliminary result:

- Improve utilization by 19% -
- Reduces the job completion time by 34% -