Scheduling CPU for GPU-based Deep Learning jobs
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Existing Approaches of Scheduling CPU
Isolated GPU, shared CPU

- Allocate deep learning jobs only considering GPU -
- No CPU isolation, potential interference -

- Hard to diagnose job performance GPU for worker
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CPU is Undervalved

(1) CPU number affects performance

- Incorrect CPU allocation affects GPU-based deep learning
jobs up to 15x

- Given insufficient CPU number, different jobs show different

slowdown
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* For plotting, the number of FlowNet2 and ResNet-50 increase by 1,000x and 100x respectively

(3) Better GPU, more CPU

- DL jobs are mixed with Ops in GPU (e.g., Convolution, Matrix
Multiplication) and Ops in CPU (e.g., data augmentation)

- With better GPU, Ops in GPU is faster, making the Ops in CPU
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Design and Preliminary Result

How to automatically decide appropriate CPU cores in
characteristic-aware manner for effective GPU performance
in a heterogeneous cluster?

- Light-weighted profiling for optimal experiment design based
performance predictor

- Coarse-grained rescheduling

- Continual monitoring architecture
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Based on task role

Heuristic number of CPUs to each role of tasks -
E.g.: 3-core for parameter-server, 4-core and 1- -
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(2) Heterogeneous CPU demand across jobs

Bind CPU and GPU
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Fairly divide CPUs to the GPUs
Each GPU will get a certain number of CPU
regardless of job type
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Some applications (e.g., Overfeat) require almost all the CPUs to
extract 1-GPU’s maximal performance

performance

DL application Category #cores
Lenet CV 20
Alexnet CV 19
Overfeat CV 22
Googlenet CV 11
LanguageModel NLP 1
Bi-Att-Flow NLP 8
DeepSpeech Speech 3
Wavenet Speech 3

RNN language model needs only 1-CPU to fully extract 1-GPU’s

CPU number required for best 1-GPU performance
on P100 Azure VM (24 cores in total)

(4) Waving CPU demand over time
- Intraining, GPU is highly utilized; in validation, CPU is dominating

- With more CPU allocated for validation, the validation time
reduces a lot
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Profiling time (seconds)

NMT task profiling

(1 P100 GPU + 4 cores) Time with # of cores

Performance predictor:

[ PyxlogC + P, +C C <40
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- Cdonates # of CPU cores. 0 is the sweet point. P, is parameters
Preliminary result:

- Improve utilization by 19%

- Reduces the job completion time by 34%



