Gandiva: Introspective Cluster Scheduling for Deep Learning

Wencong Xiao^{+**}, Romil Bhardwaj^{**}, Ramachandran Ramjee⁺, Muthian Sivathanu⁺, Nipun Kwatra⁺, Zhenhua Han⁺⁺, Pratyush Patel⁺, Xuan Peng⁺⁺, Hanyu Zhao⁺⁺, Quanlu Zhang⁺, Fan Yang⁺, Lidong Zhou⁺

Beihang University, ⁺ Microsoft Research, ⁺ The University of Hong Kong,
Huazhong University of Science and Technology, • Peking University

Characteristics of Deep Learning Jobs

Feedback-driven exploration

 Deep learning experiments today use manual or automatic (AutoML) trial-and-error techniques to find the best model

Model Sensitivity

- DL jobs have different sensitivities to resource affinity, due to network architecture or hyper-parameters (e.g., batch-size)

Intra-job Predictability

 GPU Memory usage follows a cyclic pattern aligned with mini-batch boundaries, usually with more than 10x difference in utilization within a mini-batch

- Other cases: Inter-server locality, 1-GPU interference, NIC interference

 $\int_{0}^{5} \int_{0}^{5} \int_{0}^{1} \int_{0}^{1} \int_{1}^{1} \int_{0}^{2} \int_{1}^{2} \int_{0}^{1} \int_{1}^{2} \int_{0}^{1} \int_{1}^{1} \int_{0}^{1} \int_{0$

Scheduling Mechanisms for Deep Learning

Traditional GPU Allocation

- Allocation reactively at job arrival and departure
- Dedicated GPUs for a job in its whole lifetime
- Jobs queued if no qualified resources

Used

Migration

Generic GPU processes: Use
CRIU to dump and restore
process state across machines
Checkpoint-aware processes:
repurpose TF checkpointing
APIs to save and restore state.
Pre-warm libraries for fast
migration.

Suspend-Resume/Packing

Grow-Shrink

- Copy GPU memory to CPU at mini-batch boundaries
- Restore state from CPU memory on resume
- Or, run multiple processes simultaneously on a GPU.

- Opportunistically scale jobs to idle GPUs
- Vacate GPUs on-demand
- Depends on job capabilities to utilize additional GPUs

Introspective Policies

Over-subscription

- **Time-slice** to allow multiple jobs to run simultaneously with a weighted time-share
 - **Pack** multiple jobs in the same server if jobs have light-weight resource requirements

Experimental Results

Hyperparameter Search with Time-slicing

Search across 12 dimensions - LeNet on CIFAR-10

Up to 7x faster hyperparameter search

	Position	93th	187th	280th	365th
		(25%)	(50%)	(75%)	(98%)
4 GPUs	Baseline	691.5	1373.0	2067.2	2726.4
	Gandiva	125.5	213.8	302.4	387.1
	Speedup	5.51x	6.42x	6.84x	7.04x
16 GPUs	Baseline	253.0	492.7	731.7	970.0
	Gandiva	74.4	103.7	135.4	162.6
	Speedup	3.40x	4.75x	5.40x	5.96x

Cluster Experiment: Time-slicing + Packing

Mixed PyTorch jobs on 180 Tesla GPUs

26% increase in cluster GPU utilization 4.5x faster job feedback

Runtime adjustment

- Migrate jobs at mini-batch boundary if better resources appear
- **Defrag** GPUs to better compact resources for multi-GPU jobs
- Grow to more resources when available and shrink when required

Profiling for introspection

Monitor resource utilization (e.g., GPU utilization and memory)

-

- Non-invasive **progress rate estimation** for scheduling decisions

Time to find a qualified model (minutes)

Low overhead Suspend/Resume & Migration

Migration time of real workloads

Cluster GPU utilization

Cluster Experiment: Time-slicing + Migration 9-day trace from Microsoft servers on 100 GPUs

> 27% reduction in job completion time 13.6x faster AutoML in shared environments

