Balanced Sparsity for Efficient DNN Inference on GPU

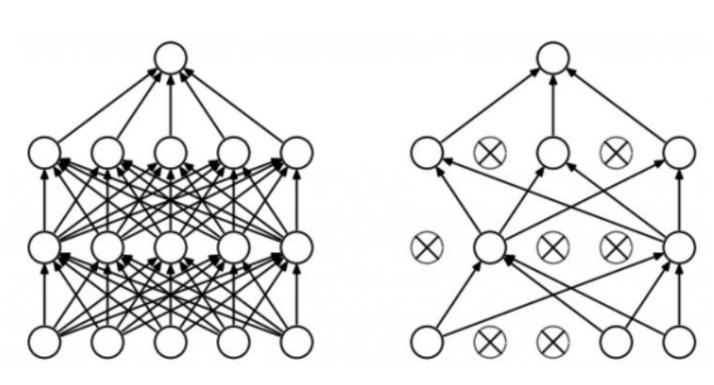
Zhuliang Yao^{++*}, Shijie Cao^{++*}, Wencong Xiao⁺⁺, Chen Zhang⁺, Lanshun Nie⁺

Tsinghua University, † Microsoft Research, * Equal Contribution

Harbin Institute of Technology,

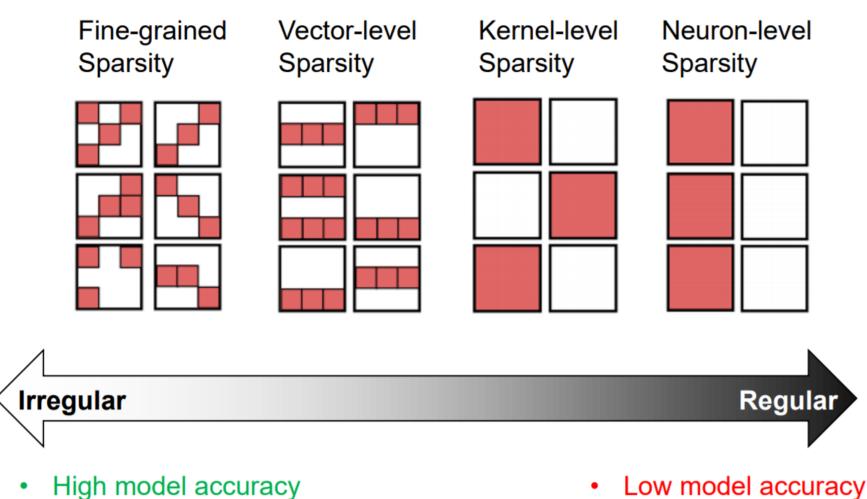
Sparsity in Deep Learning

Redundancy in DNNs



"Dead" / little activation

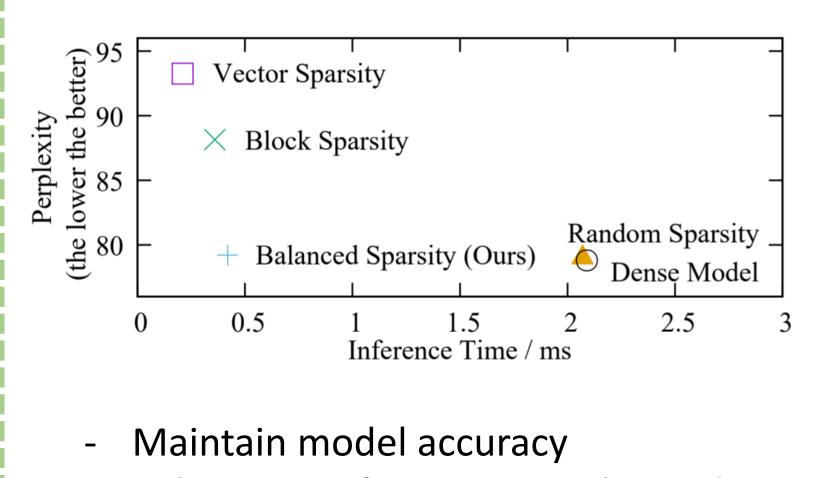
Speedup and Accuracy Tradeoff



Our Method

Microsoft[®]

Research

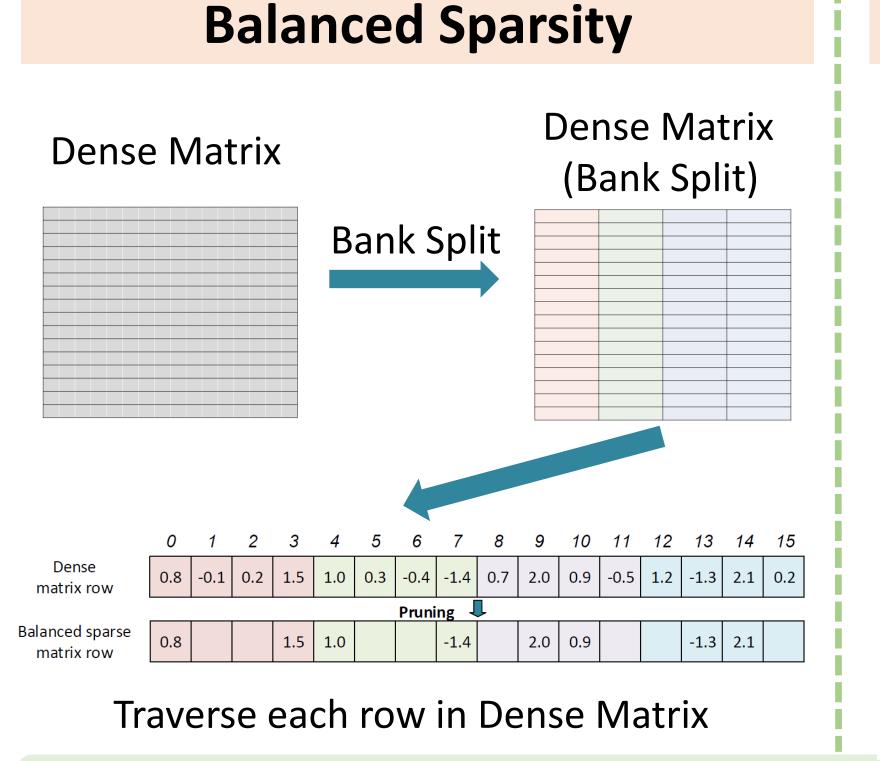


- Uncorrelated with output
- Correlated with other neurons

	riigh model decardey
•	High compression rate
•	Irregular pattern

- Difficult to accelerate
- Low compression rate
- Regular pattern
- Easy to accelerate
- Achieve significant practical speedup
- Flexible for any kinds of networks

Methodology

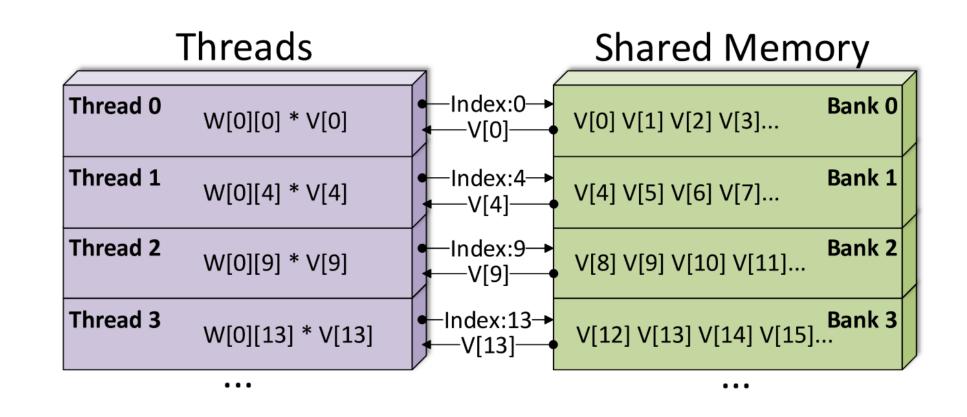


Experimental Results

Benchmark

Algorithm 1: Balance-aware Iterative Pruning **Input:** The matrix to be pruned, M; The number of blocks per row, *BlockNum*; The expected sparsity, *Sparsity*; **Output:** The pruned matrix, M_p ; 1 for $M_i \in M.rows$ do Divide M_i into $block_{i,j}$ (j = 1 to BlockNum);3 end 4 $tmp_{sparsity} = 0;$ 5 while $tmp_{sparsity} < Sparsity$ do $tmp_{sparsity} = GraduallyIncrease(tmp_{sparsity});$ 6 for $block_{i,j} \in M$ do 7 Sort elements and calculate the block internal 8 threshold $T_{i,j}$ based on $tmp_{sparsity}$; for each element \in block_{i,j} do 9 prune element if |element| < T; 10end 11 12 end 13 end 14 return the pruned matrix, M_p ;

Iterative Pruning

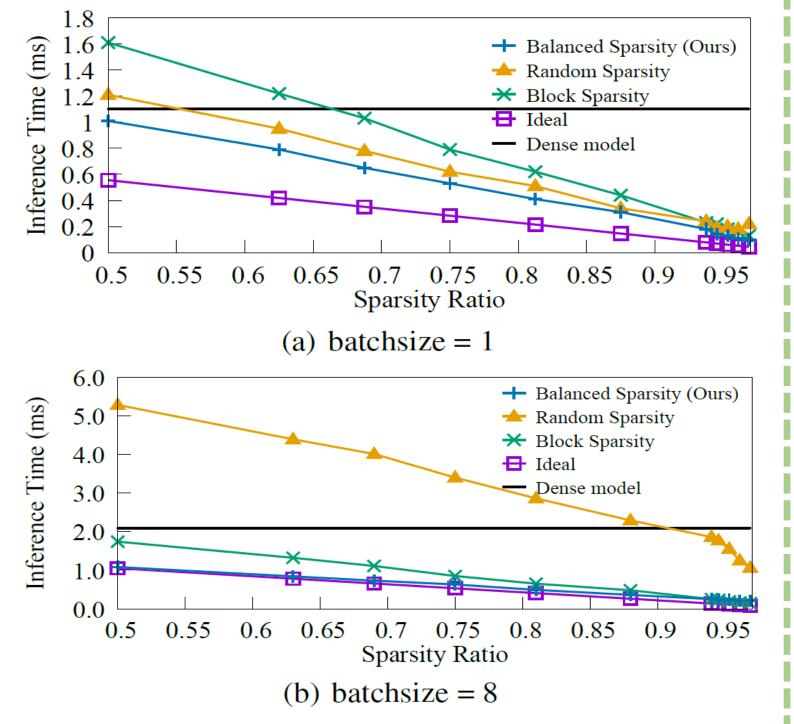


Efficient GPU Implementation

- Load balancing between threads
- Single Instruction Multiple Data (SIMD)
- Conflict-free shared memory access

Real Workloads

Matrix Vector Product



Always faster than RS and BS Almost reach ideal bound when batchsize = 8

Further Explorations

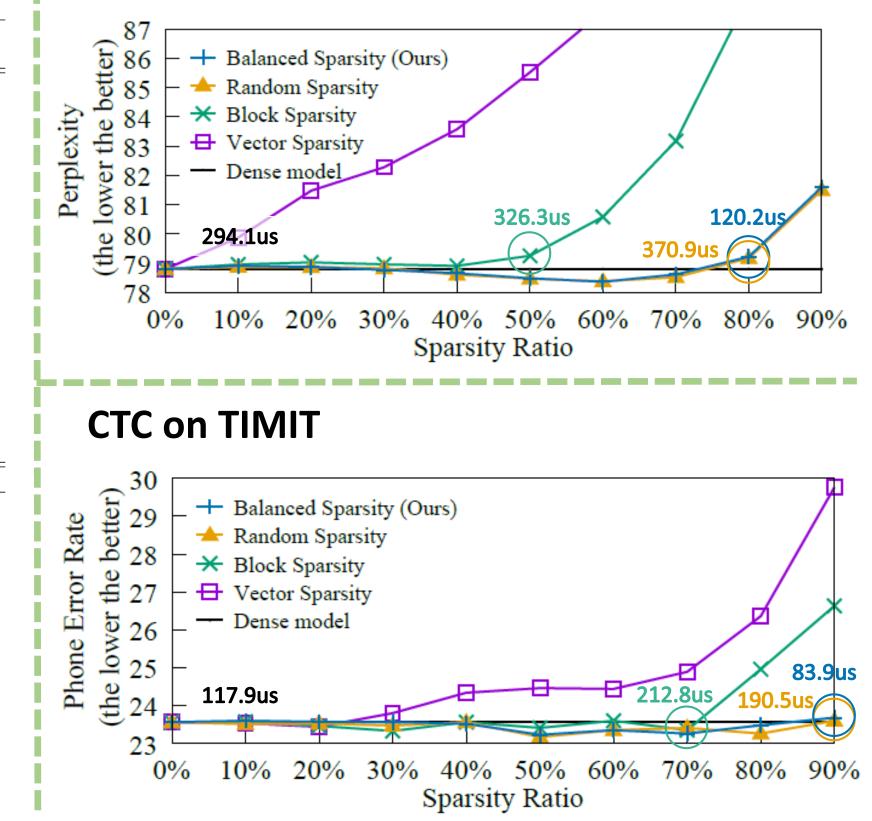
VGG on ImageNet

	Dense Model		Random Sparsity		Block Sparsity		Balanced Sparsity	
	Inference Time \us	Sparsity						
conv1_1	144.0	-	714.7	42%	78.3	31%	254.7	34%
conv1_2	612.5	-	2578.0	88%	949.4	56%	1018.4	68%
conv2_1	393.5	-	1842.5	70%	356.2	41%	474.4	65%
conv2_2	588.2	-	4640.0	71%	639.9	38%	557.0	71%
conv3_1	305.0	-	2668.6	57%	286.2	30%	371.4	45%
conv3_2	584.4	-	3768.9	84%	362.6	56%	396.5	79%
conv3_3	584.4	-	4257.4	71%	490.3	35%	355.7	88%
conv4_1	333.3	-	2005.3	79%	237.8	41%	295.4	86%
conv4_2	623.0	-	3196.0	86%	316.6	57%	366.2	91%
conv4_3	623.0	-	3205.9	85%	500.5	38%	396.5	88%
conv5_1	211.0	-	920.1	88%	170.7	41%	129.9	86%
conv5_2	211.0	-	926.3	91%	132.9	52%	126.4	90%
conv5_3	211.0	-	1053.6	89%	163.8	36%	110.2	95%
fc6	979.9	-	1084.6	93%	841.8	75%	231.1	93%
fc7	265.5	-	251.0	93%	238.6	75%	70.3	93%
fc8	144.5	-	294.5	75%	120.6	60%	58.9	75%
Total*	6814.141	-	33407.4	91.8%	5886.1	71.7%	5213.0	92.0%

- All methods achieve top-5 accuracy of 90.3%, _ but under different sparsity ratio.
- Time cost of other layers (such as Pooling, Batch Normalization) is less than 230us.

12x model compression rate **6x faster inference time**

LSTM on PTB



Visualization of Sparse Weight Maps Hyper Parameter Sensitivity $\{ i, j \}$ - 0.7 **19** - 14

Perplexity on Sparsity

